






Figure 23-4. A point near the Russian–Alaskan border has longitude 180

SENSING LOCATION WITH APP INVENTOR

App Inventor provides the LocationSensor component for accessing GPS information.
The component has properties for Latitude, Longitude, and Altitude. It also
communicates with Google Maps, so you can get a reading for your current street
address.

LocationSensor.LocationChanged, pictured in Figure 23-4, is the key event handler
for the LocationSensor.

Figure 23-5. The LocationSensor1.LocationChanged event handler

This event is triggered the first time the sensor establishes a reading and each
subsequent time the phone is moved enough so that new data is read. There’s often a
delay of quite a few seconds before an app’s first reading, and sometimes the device
can’t get a reading at all. For instance, if you’re indoors and not connected to WiFi, the
device might not get a reading. Your phone also has settings by which you can turn
GPS reading off to save battery life; this is another potential reason the component
can’t get a reading. For these reasons, you shouldn’t assume that the LocationSensor

350 Chapter 23:   Reading and Responding to Sensors

Chapter 23, Reading and Responding to Sensors



properties have a valid setting until the LocationSensor.LocationChanged event
occurs.

One way to deal with the unknowns in location sensing is to create a variable
lastKnownLocation, initialize it to “unknown,” and then have the
LocationSensor.LocationChanged event handler change the value of that variable, as
shown in Figure 23-5.

Figure 23-6. The value of the lastKnownLocation variable changes whenever the
location changes

By programming the LocationSensor.LocationChanged event handler in this way,
you can always display the current location or record it in a database, with “unknown”
appearing until the first reading. This strategy is used in the No Texting While Driving!
app (Chapter 4); that app auto-responds to SMS texts and includes either “unknown”
or the last reading taken in the response.

You can also ask explicitly whether the sensor has a reading by using the
LocationSensor.HasLongitudeLatitude block illustrated in Figure 23-6.

Figure 23-7. Testing whether the sensor has a reading by using the
HasLongitudeLatitude block

351Creating Location-Aware Apps

Creating Location-Aware Apps



CHECKING BOUNDARIES

One common use of the LocationChanged event is to check whether the device is
within a boundary, or a set area. For example, consider the code in Figure 23-7, which
vibrates the phone each time a new reading shows that a person has moved farther
than 0.1 degree longitude from the Prime Meridian.

Figure 23-8. If a reading isn’t close to the Prime Meridian, the phone vibrates

Such boundary checking has numerous applications; for example, warning
parolees if they’re nearing a legally specified distance from their home, or alerting
parents or teachers if a child leaves the playground area. If you’d like to see a slightly
more complex example, see the discussion in Chapter 18 on conditional blocks.

LOCATION INFORMATION PROVIDERS: GPS, WIFI, AND CELL ID

An Android device can determine its own location in a number of ways. The most
accurate method—within a few meters—is through the GPS satellites. You won’t get
a reading, however, if you’re inside or there are skyscrapers or other obstructions
around you; you need a clear path to at least three satellites in the system.

If GPS isn’t available or the user has disabled it, the device can obtain its position
through a wireless network. You must be near a WiFi router, of course, and the
position reading you’ll get is the latitude/longitude of that WiFi station

A third way a device can determine positioning is through Cell ID. Cell ID provides a
location for the phone based on the strength of signals from nearby cell phone
towers. It is generally not very accurate unless you have numerous cell towers near
you. However, it does use the least amount of battery power compared to GPS or WiFi
connectivity.

Using the Orientation Sensor
You can use the OrientationSensor for game-like apps in which the user controls the
action by tilting the device. It can also be used as a compass to find out which
direction (north/south, east/west) the phone is pointing.

352 Chapter 23:   Reading and Responding to Sensors

Chapter 23, Reading and Responding to Sensors



The OrientationSensor has five properties, all of which are unfamiliar to most
people other than aeronautical engineers:

Roll (Left–Right)

Roll is 0 degrees when the device is level, increases to 90 degrees as the device is
tilted toward its left side, and decreases to –90 degrees when the device is tilted
toward its right side.

Pitch (Up–Back)

Pitch is 0 degrees when the device is level, increases to 90 degrees as the device is
tilted so that its top is pointing down, and increases further to 180 degrees as it is
turned over. Similarly, as the device is tilted so that its bottom points down, Pitch
decreases to –90 degrees and then down to –180 degrees as it is turned all the way
over.

Azimuth (Compass)

Azimuth is 0 degrees when the top of the device is pointing north, 90 degrees
when it is pointing east, 180 degrees when it is pointing south, and 270 degrees
when it is pointing west.

Magnitude (Speed of a rolling ball)

Magnitude returns a number between 0 and 1 that indicates how much the device
is tilted. Its value indicates the force exerted by a ball rolling on the surface of the
device.

Angle (Angle of a rolling ball)

Angle returns the direction in which the device is tiled. That is, it indicates the
direction of the force that would be exerted by a ball rolling on the surface of the
device.

The OrientationSensor provides the OrientationChanged event, which is triggered
every time the orientation changes. To explore these properties further, let’s write an
app that illustrates how the properties change as the user tilts the device. Just add
five heading labels, and five other labels to show the current values of the properties
in the preceding list. Then, add the blocks shown in Figure 23-8. 

353Using the Orientation Sensor

Using the Orientation Sensor



Figure 23-9. Blocks to display the OrientationSensor data

USING THE ROLL PARAMETER TO MOVE AN OBJECT

This time, let’s try to move an image left or right on the screen based on the user
tilting the device, as you might do in a shooting or driving game. Drag out a Canvas
and set the Width to “Fill parent” and the Height to 200 pixels. Then, add an
ImageSprite or Ball within the Canvas, and add a Label named RollLabel under it to
display a property value, as shown in Figure 23-9.

Figure 23-10. A user interface for exploring how you can use roll to move an image

The Roll property of OrientationSensor will indicate if the phone is tilted left or
right—if you hold the phone upright and tilt it slightly to the left, you’ll get a positive
reading for the roll; if you tilt it slightly right, you’ll get a negative reading. Therefore,
you can let the user move an object with an event handler such as the one shown in
Figure 23-10.

354 Chapter 23:   Reading and Responding to Sensors

Chapter 23, Reading and Responding to Sensors



Figure 23-11. Responding to changes in the Roll property with the OrientationChanged
event

The blocks multiply the roll by –1, because tilting left gives a positive roll and
should move the object left (thereby making the x coordinate smaller). For a review of
how the coordinate system works in animated apps, see Chapter 17.

Notice that this app works only when the device is in Portrait mode (upright), not
in Landscape mode. As is, if you tilt the phone too far, the screen will change into
Landscape mode and the image will stay marooned on the left side of the screen. The
reason is that if the device is on its side, it is tilted left and thus will always get a
positive reading for the roll. A positive roll reading, as shown in the blocks in
Figure 23-10, will always make the x coordinate smaller.

Note that App Inventor does provide the Screen.ScreenOrientation property,
which you can use to lock the orientation if you don’t want it to switch between
modes. 

MOVING IN ANY DIRECTION BY USING HEADING AND MAGNITUDE

The example in the previous section moves the image left or right. If you want to
allow for movement in any direction, you can use the Angle and Magnitude properties
of the OrientationSensor. These are the properties used to move the ladybug in the
game described in Chapter 5.

In Figure 23-11, you can see the blocks for a test app in which the user tilts the
device to move a character in any direction (you need two labels and an image sprite
for this example).

Figure 23-12. Moving a character by using angle and magnitude

355Using the Orientation Sensor

Using the Orientation Sensor



Try this one out. The Magnitude property, a value between 0 and 1, indicates how
much the device is tilted. In this test app, the image moves faster as the value of
magnitude increases.

USING THE PHONE AS A COMPASS

Compass apps and apps such as Google Sky Map need to know the phone’s
orientation in the world, east/west and north/south. Sky Map uses the information to
overlay information about the constellations at which the phone is pointing.

The Azimuth reading is useful for this type of orientation. Azimuth is always
between 0 and 360 degrees, with 0 being north; 90, east; 180, south; and 270, west.
Thus, a reading of 45 means the phone is pointing northeast, 135 means southeast,
225 means southwest, and 315 means northwest.

The blocks in Figure 23-12 are for a simple compass that displays in text which
direction the phone is pointing (e.g., northwest).

As you might have noticed, the blocks show only one of four possibilities:
northwest, northeast, southwest, and southeast. As a challenge, see if you can modify
it to show just a single direction (north, south, east, or west) if the reading specifies
that you are pointing within a few degrees of it. 

Figure 23-13. Programming a simple compass

Using the Accelerometer
Acceleration is the rate of change of velocity over time. If you press your foot to the
gas pedal of your car, the car accelerates—its velocity increases at a particular rate.

An accelerometer like the one in your Android device measures acceleration, but
its frame of reference is not the device at rest, but rather the device in free fall: if you

356 Chapter 23:   Reading and Responding to Sensors

Chapter 23, Reading and Responding to Sensors



drop the phone, it will register an acceleration reading of 0. Simply put, the readings
take gravity into account.

If you want to know more about the physics of the matter, you’ll need to consult
your Einstein-related books. But in this section, we’ll explore the accelerometer
enough to get you started. We’ll even examine an app that could help save lives!

RESPONDING TO THE DEVICE SHAKING

If you’ve completed the Hello Purr app in Chapter 1, you’ve already used the
AccelerometerSensor. In that app, you used the Accelerometer.Shaking event to
make the kitty meow when the phone was shaken, as shown in Figure 23-13.

Figure 23-14. Playing a sound when the phone is shaken

USING THE ACCELEROMETERSENSOR’S READINGS

Like the other sensors, the accelerometer has an event for when the readings change,
AccelerometerSensor.AccelerationChanged. That event has three arguments
corresponding to the acceleration in three dimensions:

xAccel

Positive when the device is tilted to the right (that is, its left side is raised), and
negative when the device is tilted to the left (its right side is raised).

yAccel

Positive when the device’s bottom is raised, and negative when its top is raised.

zAccel

Positive when the device display is facing up, and negative when the display is
facing down.

DETECTING FREE FALL

We know that if all the acceleration readings are near 0, the device is free-falling to
the ground. With this in mind, we can detect a free-fall event by checking the
readings in the AccelerometerSensor.AccelerationChanged event. You could use such
blocks, with lots of testing, to detect when an elderly person has fallen and
automatically send an SMS message out in response.

357Using the Accelerometer

Using the Accelerometer



1 You can right-click a block and choose “Inline inputs” to change the way blocks appear. This was done for
the blocks in this example to reduce the width of the event handler.

Figure 23-14 shows the blocks for an app that simply reports that a free-fall has
occurred (and lets the user click a Reset button to check again).1

Figure 23-15. Reporting when a free-fall has occurred

Each time the sensor gets a reading, the blocks check the x, y, and z dimensions to
see if they’re near 0 (if their absolute value is less than 1). If all three are near 0, the
app changes a status label to denote that the phone is in free-fall. When the user taps
the ResetButton, the status label is reset to its original state (“Device has NOT been in
free fall”).

Summary
Sensors are of great interest in mobile apps because they make it possible for your
users to truly interact with their environments. By taking computing mobile, you are
opening up a whole world of opportunities in user experiences and app
development. However, you’ll need to think carefully about how, where, and when
you use sensors in your apps. Many people have privacy concerns, and they might not
use your app if they’re worried about what you’re doing with their sensor data. Still,

358 Chapter 23:   Reading and Responding to Sensors

Chapter 23, Reading and Responding to Sensors



with all the options in games, social networking, travel, and more, the possibilities for
positive implementations are nearly endless.

359Summary

Summary




